Neural Radiance Fields (NeRFs): A Review and
Some Recent Developments

Mohamed Debbagh
McGill University
Montreal, Canada

mohamed.debbagh@mail.mcgill.ca

Abstract—Neural Radiance Field (NeRF) is a framework that
represents a 3D scene in the weights of a fully connected
neural network, known as the Multi-Layer Perception(MLP). The
method was introduced for the task of novel view synthesis and
is able to achieve state-of-the-art photorealistic image renderings
from a given continuous viewpoint. NeRFs have become a popular
field of research as recent developments have been made that
expand the performance and capabilities of the base framework.
Recent developments include methods that require less images
to train the model for view synthesis as well as methods that are
able to generate views from unconstrained and dynamic scene
representations.

Index Terms—volume rendering, view synthesis, scene repre-
sentation, deep learning

I. INTRODUCTION

One of the major problems explored in computer vision
research is view synthesis, which has many implications and
shared methods within the field of computer graphics and
3D rendering. Solutions to this problem aim to develop an
approach that can generate novel views of a particular scene
given an input of 2D RGB images from a sparse set of
viewpoints. The output of such a model should be sampled
over a continuous set of viewpoints resulting in realistic novel
views of the same scene. Some popular classes of approaches
include light field interpolation, surface estimation through
mesh-based approximations, and more recently neural volume
rendering (neural network based approach). Neural Radiance
Fields (NeRF) were introduced by Mildenhall et al. and fits
within the latter class of approaches that use a neural network
architecture to represent a scene and synthesize novel views
using neural volume renderings in order to achieve state-of-
the-art results. The original paper [1] has popularized NeRF
as the prominent method for view synthesis and makes 3
overall contributions that allow the framework to produce
photorealistic outputs that can model the complex shapes and
representations of a scene. (1) The first being the representa-
tion of a continuous scene though a simple fully connected
neural network that maps a SD input (3 euclidean coordinate
dimensions and 2 viewing direction dimensions) to a 4D
output (RGB color channels and volume density). (2) The
second contribution is the use of neural volume rendering
techniques that utilizes differentiable camera rays, which make
optimization of RGB representations possible. (3) Finally, the
use of positional encoding techniques to transform the input

domain into a higher dimensional space, which allows for
the neural network to capture higher frequency details in the
scene representation during training. The NeRF model has
since been improved and expanded upon to capture various
modes of representations. This paper reviews the original
NeRF framework, referred to as vanilla NeRF, and further
explores a few of the many contributions that have been made
to expand the baseline model. This review will include the
following NeRF based developments: PixelNeRF, RegNeRF,
Mip-NeRF, Raw NeRF, and NeRF in-the-Wild. For the sake
of reviewing these concepts at the high level, we will not
include the specific equations or model architectures that were
designed for experimentation and we suggest that you explore
the original papers for details on specific implementations.

II. NEURAL RADIANCE FIELDS
A. Neural Volume Rendering

The NeRF representation is built upon neural volumes, an
implicit volumetric representation of a 3D scene learned and
stored as the weights of a deep neural network. In Lombardi
et al. [2] 2D images are fed into a Variational Autoencoder
(VAE) and are encoded as a latent code. The output of
the decoder reconstructs the latent code into a volumetric
voxel representation with a RGB and alpha channel composite
representation at each point in space. While the goal of their
research was to construct a 3D representation from 2D images,
the VAE is trained by reconstructing the 2D images from
the voxel representation, using ray marching techniques for
volume rendering. Ray marching is a differentiable process
which makes optimization using gradient descent methods
possible. A 2D reconstruction of a scene can be performed
by estimating the radiance values of each pixel in the image
plane that is projected from the 3D scene at a given viewing
direction.

Rays at each pixel site project into the 3D space at a
given viewing direction perpendicular to the image/camera
plane and are used to represent the volume or occupancy
of the space along the ray. The volume density of the pixel
is determined by taking the integral of volumes along the
ray; this process is known as volume rendering. Since it is
not computationally possible to determine volumes along a
continuous ray, volumes along discrete points along the ray
are sampled to estimate the integration; this technique for
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volume rendering is known as ray marching. The radiance and
volume of the pixel are normally represented as color (r,g,b)
and opacity in the reconstructed 2D image. This process can
be mapped through neural networks, and the entirety of this
representation method is known as neural volume rendering.

In the case of Lombardi et al. neural volume rendering is
used to reconstruct images from the 3D voxel output obtained
from the output of the VAE. However, due to the nature
of VAE’s, artifacts and reconstruction warping occurs as the
latent code from low dimensional space is being upsampled
into the high dimensional 3D voxel space. Various additional
techniques need to be applied to mitigate these effects. Thus
the final 3D shape geometry is often left less than perfect. In
contrast, the goal of view synthesis is to generate photorealistic
images from novel viewpoints. Using VAEs to reconstruct a
3D voxel interpretation is unnecessary since it would lead to
imperfections as described in [2].

B. NeRF 3D Scene Representation

The original NeRF paper proposes that the representation
of a scene be a neural volume that is described by the
weights of a simple fully connected neural network architec-
ture known as the Multilayer Perceptron (MLP), whose 5D
inputs (z,y,z,0,®) correspond to a position in 3D space,
x = (x,y,2z) and 2D viewing direction, d = (6, ®) that
correspond to a point along a camera ray. The output of
the MLP corresponds to a mapping of the color channel,
¢ = (r,g,b) and volume density, o of a pixel in the 2D image
plane at that viewpoint. Unlike the previous study, the 3D
representation of the scene is completely represented implicitly
through the weights of the simple feed forward MLP and
not through a voxel representation. The MLP feed forward
network can be expressed as Fo : (z,d) — (c,0). The
parameters, ©, of the MLP are optimized with a differentiable
volume rendering function and trained on a set of ground truth
images and their known viewing directions. The loss function
can be selected by evaluating differences between the true
pixel color and expected pixel color from the volume rendering
process. In the paper, the authors used a simple mean squared
error. For a visual overview of the NeRF scene representation
from the original paper [1] see Fig. 1.
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Overview of the NeRF scene representation pipeline. (a) Feed forward pass of the 5D input. (b) Mapping of 4D output in the 2D space. (c) Ray
marching for volume rendering. (d) optimization over reconstruction loss. [1]

C. Positional Encoding

When training the MLP, Fo : (z,d) — (c,0) directly
as described in the previous section, the model tends to
struggle to output highly detailed results. This is a common
problem in many encoding tasks, where one wants to encode a
representation, such as an image, through the weights of a fully
connected neural network. This task is difficult as the MLP’s
are biased to learn low frequencies faster. Meaning, these
networks tend to work faster on tasks that want to generalize
outcomes, and avoid overfitting the data. However, since the
goal of neural volume rendering is to fit a precise geometric
shape to a 3D scene, it is better for the network to overfit
the data. [3] Tancik et al. introduce a method, commonly
used in transformers, called positional encoding, to map the
low frequency input to a high frequency domain. Mapping
the input to a high frequency domain allows the MLP to
capture the high frequency and high resolution detail in the
scene. When applied to the MLP, the NeRF model becomes
Fg : (v(z),v(d)) = (c,0). Where ~(.) is the function that
maps our input into the high frequency domain. In the case of
NeRF a Fourier feature mapping is used as the high frequency
feature mapping function. Note that this is necessary to achieve
the photorealistic results obtained from the NeRF model.

D. Properties

Thus far, the NeRF model and its optimization method for
view synthesis have been described as a neural volume rep-
resentation that can capture high frequency geometric details
of a 3D scene. This gives NeRF some interesting intrinsic
properties that extend beyond the task of view synthesis.
The first attribute to note is that since the 3D geometric
representation is stored as weights within a fully connected
neural network, the NeRF can be considered a compressed
format for 3D models. The 3D model can be reconstructed by
querying the pre-trained NeRF over pre-defined viewpoints,
then applying 3D geometric construction methods such as
marching cubes. This is significant since the size of a NeRF
file would be smaller than a single image that the model
was trained on. The second attribute is that NeRF captures
relational geometric information about a scene. This gives
us the ability to use the detailed geometric information for
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Fig. 2. Overview of the PixelNeRF input and volume rendering pipeline. [4]

tasks such as generating depth maps and shape visualizations.
This can also be used to capture occlusion effects on mixed
reality scenes. The third attribute is the ability to visualize the
effect of color perception at different viewing directions. This
attribute allows scenes to be captured under various lighting
conditions in a photorealistic manner given a fixed position.

E. Implementation and Challenges

The resulting view points obtained from the NeRF ap-
proach are highly detailed and outperform prior state-of-the-
art methods in both synthetically modeled scenes and real
scenes. However the vanilla NeRF model described thus far
has several constraints for real world implementation. The first
aspect that we will focus on is the training and optimization
process. The challenge with the implementation of the NeRF
model is that each scene requires training on images with
known viewpoint directions. While this problem seems quite
limiting for on-the-go application, there exists methods to
estimate these parameters including the COLMAP structure-
from-motion package [5]. This may introduce some variation
during the generation of new scenes, nevertheless the results
obtained are still quite impressive. The training and rendering
processes are very slow compared to other methods and require
a diverse set of images from unique viewpoints to capture
seamless continuous view synthesis. Most implementations
require at least 80 images for training. Models trained with
very sparse images will generate uninterpretable scenes and
fail to generalize. Other challenges include the constraints on
the scenes being captured. NeRFs are constrained to static
scenes as the influence of dynamic factors can have drastic
effects on view synthesis. This includes reflections, moving
objects and backgrounds. These challenges observed by the
vanilla model have created a new field of study specifically on
optimizing and expanding on the base NeRF concept. We will
explore the recent developments that address some of these
challenges in the next few section of this paper.

III. VIEW SYNTHESIS FROM FEWER IMAGES

One challenge area that is addressed by recent developments
in NeRF research is the calibration process of a scene. The
implementation of NeRF is often limited due to the time and
computational heavy process of training and rendering new
scenes. One approach is to reduce the amount of resources
spent on the calibration process. There are two papers that

address the issue of reducing the amount of calibration images
required.

A. PixelNeRF

The vanilla NeRF model requires many images from a di-
verse set of viewpoints as MLP model do not generalize well.
MLPs also do not incorporate spatial information as images
are flattened before they are fed into the training process.
The vanilla method does not take into account information
learned from multiple views if more than one viewpoint is
used to calibrate the scene. This leads to the degradation of
the scene synthesis when image sampling is not consistent
and sparse (fewer than 80 images). Yu et al. [4] introduces an
expansion to the base NeRF model, which incorporates scene
priors during calibration. This model is named PixelNeRF
and the main contribution to the NeRF framework is the
conditioning of the model on the input images by passing
them through Convolutional Neural Networks (CNN) to train
scene priors. To better illustrate this, a visual overview of the
volume rendering pipeline from the paper ig given [4], see
Fig. 2. This allows the model to be trained with as low as one
calibration image, though this is only recommended for simple
geometries. In multi-view calibration (2 or more images)
the output from the CNN of each input image at different
views is combined before feeding it through the volume
rendering process. PixelNerf is able to achieve continuous
scene representations on simple synthetic models from the
ShapeNet database [6] with only one calibration image. The
model was also tested on real images, and was able to generate
a coherent geometric representation of the scene using a single
calibration image, which is not possible from the vanilla NeRF.
However, the results were not perfect and generated artifacts
and distortions. This problem is significantly mitigated with
the addition of multiple views (2-3 more) for calibration.

B. RegNeRF

Niemeyer et al. introduce an approach which reduces the
floating artifacts and image inconsistencies that occur when
the vanilla NeRF is trained only on a few images. The paper
achieves this through the regularization of patches in unseen
views for geometry smoothness and color [7]. The model
introduced by this paper is named RegNeRF and it improves
upon the vanilla NeRF model optimization process. While the
vanilla NeRF model optimizes over the reconstruction loss



of the input images, it is not optimized to learn geometric
consistencies at various points, thus the approach deteriorates
as sample images become sparse. RegNeRF samples rays from
patches at unseen viewpoints and then defines an optimiza-
tion with the goal of regularizing the patches for geometry
smoothness and color likelihood. This is done during the
training process by defining loss functions of the regularization
terms for both color and geometry patches. The results from
this paper show significant improvement in reducing floating
artifacts when compared to previous models. Since RegNerf
keeps the MLP architecture of the original NeRF model, it
is less computationally expensive during pre-training than the
CNN based pixelNerf. RegNeRF can be trained using as low
as 3 calibration images.

IV. DYNAMIC AND UNCONSTRAINED CONDITIONS

The dynamic conditions of a particular scene is a major
contributing factor to its representation. Typically the vanilla
NeRF model is not able to take advantage of these dynamic
conditions, and in fact, it requires scenes to be constrained to
achieve volumetric renderings without artifacts such a float-
ing artifacts and aliasing. Recent developments to the NeRF
model have explored methods for exploiting, controlling, and
manipulating various aspects of a scene conditions. In this
section, we will explore a few papers that tackle issues in
areas such as anti-aliasing at multi-scale representation, image
processing pipe-line and representations from unconstrained
sample images.

A. Mip-NeRF

Multi-scale representation poses a challenge for many image
processing and 3D rendering task. The recreation of a 3D
scene or 2D image from different scales is often accompanied
with artifacts, known as jaggies, which are often caused
by aliasing. Aliasing is particularly observed in the NeRF
model when sampling on lower resolution input images. The
reconstruction of the views with the same resolution often
contain these jaggies. Training NeRF models with multi-scale
resolutions to mitigate this problem, often does not lead to
significant improvements especially when trying to reproduce
higher resolutions views. Barron et al. introduces Mip-NeRF,
an extension of the NeRF approach that uses ray cones to
capture a volume of space rather than a infinitesimal point
to control multi-scale representation of a scene [8]. As the
scale of an image changes, so does the amount of information
a single pixel captures from a scene. Thus, sampling points
along a single point ray at each pixel causes distortions during
interpolation with neighboring pixels, resulting in the aliasing
effects. Sampling points along a regions in a conical ray allows
for the capture of volumetric information in a non-linear way.
The paper approximates these these conical intersection along
these ray cones by fitting a multi-variate Gaussian distribution.
Since sampling is no longer performed along a line, selecting
samples in the distribution amounts to an expected value
of the positional encoding, which in turn lets the network
reason based on adjusted volume of space from scaling. A

visual representation of the conical rays is given in a diagram
from the original paper [8], see Fig.3. The results from this
study showed that Mip-NeRF outperforms multi-scale reso-
lution reconstruction when compared to the previous vanilla
NeRF method. It is also significantly more computationally
efficient, when compared to the super sampling method with
comparable results.
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Fig. 3. Comparison of NeRF ray marching and mip-NeRF ray cone Gaussian
expectation sampling. [8]

B. Raw NeRF

In this section we take a look at a NeRF model approach that
considers the image processing and post processing pipeline
rather than the model architecture to gain more information
from a scene resulting in impressive results. NeRF models are
typically trained using Low Dynamic Range images (LDR)
to perform novel view synthesis. This processing procedure
is typically done to remove noise from images, especially in
the dark. This is however at the expense of loss in details in
darker regions of the scene. This loss of detail is reflected
on novel views generated by the NeRF model. For example,
scenes under very low lighting conditions, produce very dark
viewpoint images with little to no detail. High Dynamic Range
(HDR) images in contrast utilize a technique by combining
multiple images with different exposures or views to capture
details and even apply post processing techniques for re-
focusing. Mildenhall et al. proposes in their paper [9] that the
inputs of the NeRF model be raw and minimally processed,
noisy mosaicked linear images to capture more details of a
scene, especially in the dark. The NeRF can then synthesis
novel views points of the scene and apply post processing
techniques to capture the effects similar to HDR in the
final synthesized view. A visual representation of the Raw
NeRF pipeline from the original paper is presented [9], see
Fig. 4. This methodology has many implications on novel view
synthesis. First, the Raw NeRF is able to generate a denoised
view of a scene that outperforms deep denoising methods used
in LDR processing as will as multi-view denoising. Raw NeRF
is able to render a scene with very low lighting conditions with
photo-realistic detail. Moreover, post processing methods in
the HDR color space can be applied to achieve further effects
such as refactoring of exposure of a scene, tone mapping and
refocusing. This is performed while also capturing the 3D
geometric detail of a scene.

C. NeRF in the Wild

A limitation of the vanilla NeRF model and many of its
variants is the requirements of constrained sampling con-
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Fig. 4. Overview of the rawNeRF input and volume rendering pipeline. [9]

ditions. This restricts many possible applications of NeRF
on real world and natural images. This also constrains the
NeRF model to fixed scenes with one or few objects and re-
quires fairly consistent image viewpoints for calibration. When
trained on unconstrained images and dynamic scenes, the
NeRF generates views with floating artifacts, as it does know
how to interpret these changing entities. These dynamic factors
include photometric variations such as lighting conditions, and
weather conditions as well as transient objects such as moving
objects and temporary structures. Martin-Brualla et al. propose
an expansion of the NeRF model called NeRF-W that embeds
the static and transient components of a scene to generate
novel views under dynamic conditions [10]. NeRF-W is able to
disentangle the learned static components and dynamic factors
by conditioning the inputs of the model on an appearance
embedding and transient embedding. During training NeRF-
W learns these interpretation by optimizing the embeddings
along-side the weights of the NeRF on a reconstruction loss
that is modulated with an uncertainty factor. Doing so NeRF-
W is able to successfully isolate the structure of the scene with
the dynamic aspects. Since the transient embedding is learned,
scenes can be recreated under various conditions taking from
the variety of the training data. In essence the NeRF-W is a
disentangled version of the original NeRF model conditioned
on the dynamic factors.

V. CONCLUSION

Since the development of the NeRF framework in 2020,
many variants and expansions have been made that dramat-
ically improve its performance and capabilities. The ability
of the model to achieve state-of-the-art results and photo-
realistic rendering presents many opportunities for such a
framework in the field of view synthesis and beyond. NeRF
has since become a field of research of its own with significant
developments continuing to be made. Application of NeRFs
include, 3D scene rendering in cinematography, 3D graphics
generation, virtual rendering and walk-through of sites and
many more. This paper covers a review of the base NeRF
framework and explores some of the recent developments
made thus far (at the time of writing this paper). It is highly
recommended that each NeRF model variant be observed

visually through video demonstration on the respective project
sites as the capabilities can only be captured visually.
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